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Abstract
We propose an anytime bottom-up technique for le-
arning logical rules from large knowledge graphs.
We apply the learned rules to predict candidates in
the context of knowledge graph completion. Our
approach outperforms other rule-based approaches
and it is competitive with current state of the art,
which is based on latent representations. Besides,
our approach is significantly faster, requires less
computational resources, and yields an explanation
in terms of the rules that propose a candidate.

1 Introduction
Knowledge graph completion has become a vivid field of re-
search within the last ten years. While current research is
mainly concerned with latent representations that are based
on the idea to embed a knowledge graph into a low dimensi-
onal vector space, symbolic approaches have attracted much
less attention [Wang et al., 2017]. However, such approaches
have a big advantage, which is their ability to yield an expla-
nation in terms of the rules that trigger a prediction.

In this paper we propose a bottom-up technique for effi-
ciently learning logical rules from large knowledge graphs.
Our work is inspired by bottom-up rule learning approaches
Golem [Muggleton and Feng, 1990] and Aleph [Srinivasan,
2000], which have been developed in the early days of In-
ductive Logic Programming (ILP). A bottom-up approach is
based on the idea that an example is a compact representa-
tion of a very specific rule that can be generalized to capture
a comprehensive subset of all positive examples. Aleph is
one of such approaches. It transforms a given positive ex-
ample into a Horn rule called bottom rule. This rule is then
generalized by dropping atoms from the rule body until a rule
has been found that fulfills a chosen quality criteria. The ex-
amples covered by the rule are removed and the approach is
again applied until all examples are covered.

Our approach differs in several ways. First of all, we do not
have a strict border that tells us which observations belong to
a given example and which do not belong to it. Instead, we
have to decide what to treat as an example. We base our no-
tion of an example on the concept of a path. In that sense our
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approach is similar to the path ranking algorithm (PRA) [Lao
et al., 2011]. However, PRA considers as features only a sub-
set of the rules that we might learn.

Second, we are interested in learning uncertain rules, i.e.,
rules that cover at least some positive and usually also some
negative examples. Even a rule with low confidence might
still help us to create a better candidate ranking for the kno-
wledge graph completion task. Moreover, we cannot remove
the examples covered by a rule, because there might be ot-
her rules that cover also (some of) these examples and other
examples, with a different confidence score.

Third, our algorithm is designed to be an efficient rule mi-
ner for knowledge graphs. Within a knowledge graph all facts
(also referred to as triples) result from grounding binary pre-
dicates with constants. Thus, a knowledge graph can be de-
constructed into a set of edge-labelled paths. This is the main
reason why it makes sense to focus on paths in the absence of
unary predicates or n-ary predicates with n ≥ 3.

The problem of knowledge graph completion (or link pre-
diction) is currently dominated by methods that embed a gi-
ven knowledge graph in a latent feature space. Learning an
explicit symbolic representation is rarely proposed as alter-
native. This might be related to the underlying assumption
that a rule-based approach alone cannot solve more than just
a trivial subset. See, for example the discussion of the inverse
model proposed in [Dettmers et al., 2018] and the critics re-
lated to the redundancies in FB15k [Toutanova and Chen,
2015]. Another assumption might be that rule learning can-
not be applied to large datasets. For that reason current rese-
arch is concerned with the combination of rules and embed-
dings (e.g., [Guo et al., 2018]). We argue that the underlying
assumptions are wrong and present results that support our
claim. In particular, we propose an anytime bottom-up algo-
rithm for learning rules and apply our approach to the kno-
wledge completion task. We present results for five different
datasets. Three of them have been proposed as hard cases for
simple (rule-based) approaches that leverage symmetries and
other redundancies. Our approach performs as good as and
sometimes better than most models that have been proposed
recently. The results of our approach are still very good if we
stop the algorithm already after a short time period. Moreo-
ver, the required resources in terms of memory and runtime
are significantly smaller compared to the resources required
by latent approaches.



2 Language Bias
A knowledge graph G is defined on top of a vocabulary
〈C,R〉 where C is a set of constants and R is a set of binary
predicates. Hence, G = {r(a, b) | r ∈ R, a, b ∈ C} is a set
of ground atoms or facts. A binary predicate is called relation
and a constant (or what the constant refers to) is also called
entity. In the following we use lower-case letters for constants
and upper-case letters for variables. Since we do not learn ar-
bitrary Horn rules, there is a language bias towards what kind
of rules can be learned as discussed below.

We call a rule as h(c0, c1)← b1(c1, c2), ..., bn(cn, cn+1) a
ground path rule of length n. The head of the rule is h(...)
and b1(...) through bn(...) is its body. We say that a ground
path rule is straight if ck 6= cl for l, k ∈ {1, ..., n} with l 6= k
and if c0 6= ck with 0 < k < n + 1. Such a rule does
not have cycles in the body. In our formalization we abstract
from the order of variables in the sense that we consider also
rules with flipped variables without explicitly writing them
down. Straight ground path rules can be divided into cyclic
rules with c0 = cn+1 and acyclic rules with c0 6= cn+1. We
argue that any useful generalization from a straight ground
path rule of length n, which is not also a generalization of a
shorter path rule or a generalization of a path rule that is not
straight, belongs to one of the three types AC1, AC2 or C
defined below. We use X and Y for variables that appear in
the head, while Ai is a variable that appears in the body only.

AC1 h(c0, X)← b1(X,A2), ..., bn(An, cn+1)

AC2 h(c0, X)← b1(X,A2), ..., bn(An, An+1)

C h(Y,X)← b1(X,A2), ..., bn(An, Y )

AC2 rules are generalizations of acyclic ground path rules,
C rules are generalizations of cyclic ground path rules, while
AC1 rules can be generalized from both cyclic (with c0 =
cn+1) and acyclic ones (with c0 6= cn+1).

Any rule that is more specific than rules that belong to these
three types must have a constant ck with k < n + 1 instead
of a variable Ak. With respect to AC1 and AC2 types we
have to distinguish between two cases: (1) The conjunction
of body atoms bk(...) to bn(...) evaluates to true and hence
they can be removed from the rule. In this case, the rule that
can also be created from a shorter path of length k. It will
later be clarified that we learn this rule in a previous iteration
of the overall algorithm. (2) The conjunction of atoms bk(...)
to bn(...) evaluates always to false, which results in a rule that
never fires.

For the C type such a constant ck would split the rule
into two parts where one part is related to X and the
other part is related to Y . Such a rule might also have
been created as the generalization of a rule h(c0, c1) ←
b1(c1, c2), ..., bk−1(ck−1, ck), b−1n (c0, cn), ..., b−1k (ck+1, ck).
We would thus generate a rule that has a rule body which is
the conjunction of the bodies of two shorter rules.

A small subset of a knowledge graph G is shown in Fi-
gure 1. Suppose that we are interested in finding rules that
explain why Ed speaks Dutch, which corresponds to the fact
speaks(ed, d). To construct useful rules, we look at all paths
of length n that start at ed or d. We will later explain that
we create rules of length n until a certain degree of saturation

Figure 1: A small knowledge graph G used for sampling paths. We
marked the body of Rule 1 (blue), Rule 2 (green), and Rule 3 (red).

is met, before we continue with n + 1. Note that we allow
a path to be constructed by following in- and outgoing ed-
ges. We have marked three paths starting at ed in Figure 1.
Two of these paths are acyclic paths ending somewhere in
the knowledge graph, while the third path is, together with
speaks(ed, d), cyclic. Rule (1), (2), and (3) are the bottom
rules which have to be generalized.

speaks(ed, d)← born(ed, a) (1)
speaks(ed, d)←married(ed, lisa), born(lisa, a) (2)
speaks(ed, d)← lives(ed, nl), lang(nl, d) (3)

We argued above that any useful rule, which meets the crite-
ria mentioned above, is of one of the three types. Thus, we
can directly instantiate these types instead of building up a
complete generalization lattice. We list in the following all
rules that result from generalizing Rule 2 and Rule 3.

speaks(X, d)←married(X,A2), born(A2, a) (4)
speaks(X, d)←married(X,A2), born(A2, A3) (5)
speaks(X,Y )← lives(X,A2), lang(A2, Y ) (6)
speaks(X, d)← lives(X,A2), lang(A2, d) (7)
speaks(ed, Y )← lives(ed,A2), lang(A2, Y ) (8)

Obviously, Rule 6 is more general than Rule 7. This means
that Rule 6 fires always if Rule 7 fires. However, the rules
might have different confidence scores. For that reason it ma-
kes sense to use both rules in the prediction phase.

The confidence of a rule is usually defined as number of
body groundings, divided by the number of those body groun-
dings that make the head true. Note that we count in terms
of head groundings, e.g., we count the number of different
〈X,Y 〉 groundings with respect to Rule 6 and the number
of different X groundings with respect to Rule 7. Several
subtle modifications of the basic definition have been intro-
duced to cope with missing information, e.g., PCA confi-
dence [Galárraga et al., 2013] or completeness-aware sco-
ring functions [Tanon et al., 2017]. In this paper we stick to
the standard definition, with a minor modification of additive
smoothing explained later. To compute the exact confidence
can be costly, because it requires to do many joins depending
on the number of body atoms. For that reason we only sample
body groundings, for which we compute the respective head
groundings. The computed confidence is thus an approxima-
tion of the correct confidence.



3 Algorithm
In the following we propose an anytime bottom-up rule lear-
ning algorithm (Algorithm 1, called AnyBURL) that uses the
generalization techniques from the previous section. The ba-
sic idea of the algorithm is to sample paths of length n from a
given knowledge graph G, starting with n = 2. From a path
of length n, the algorithm learns rules of length n − 1. Re-
member that we count the rule length in terms of body atoms,
the first edge in the path corresponds to the head atom. This
is done until a certain saturation sat for rules of length n− 1
are reached. Then n is increased by one and the algorithm
continues to learn longer rules. The required saturation sat is
a parameter that needs to be specified. Another parameter is
the quality criteria Q which is used to decide whether or not a
rule is stored. Q can be, for example, a threshold on the con-
fidence. We use a sampling strategy to efficiently compute
the confidences of a rule using the function score. The size of
the sample can be specified as parameter s.

Algorithm 1 Anytime Bottom-up Rule Learning
AnyBURL(G, s, sat,Q, ts)

1: n = 2
2: R = ∅
3: loop
4: Rs = ∅
5: start = currentT ime()
6: repeat
7: p = samplePath(G, n)
8: Rp = generateRules(p)
9: for r ∈ Rp do

10: score(r, s)
11: if Q(r) then
12: Rs = Rs ∪ {r}
13: end if
14: end for
15: until currentT ime() > start + ts
16: R′s = Rs ∩R
17: if |R′s|/|Rs| > sat then
18: n = n + 1
19: end if
20: R = Rs ∪R
21: end loop
22: return R

The learning process is conducted in a sequence of time
spans of length ts. Within a time span (repeat-until loop)
the algorithm learns as many rules as possible by iteratively
sampling random paths. Once the given time span is over,
the rules found within this span are evaluated. Note that R
contains all rules that have been learned in the previous time
spans, Rs contains all rules found in the current time span,
and R′s contains rules found in the current time span that have
also been found in one of the previous iterations. We compute
the fraction |R′s|/|Rs| and if this number is above the sat
parameter, we increase the path (and thus rule) length by one
and continue with the overall process. The higher n, the more
time spans are usually required to reach the saturation sat.

It is important to understand that a saturation of, e.g, 99%

does not mean that 99% of all possible rules instantiations
have been found, but that 99% of the sampling activities re-
sult in already known rules. This is caused by the fact that
there are rules that leave their traces (in terms of paths) more
frequently in G. Such an unbalanced distribution makes it re-
latively easy to reach a high saturation, which is at the same
time one of the reasons why sampling works well.

4 Rule Application
We want to learn rules that allow us to predict candidates c
with c ∈ C to replace the question mark in r(a, ?) with r ∈ R
and a ∈ C such that r(a, c) 6∈ G is true. Given a completion
task as r(a, ?), we have to compute a ranking of the top-k
candidates that can substitute the question mark. It would be
straight forward to create such a ranking if each entity would
be generated by at most one rule. We could just order the
proposed entities by the confidence values of the rules that
suggested them. However, an entity is usually suggested by
several rules.

If we would assume that these rules are independent, we
could base our decision on multiplying confidences. This
prediction strategy is called the Noisy-Or aggregation. Ho-
wever, the underlying assumption is often not valid. Suppose
we have the following three rules, where citizen(X,Y ) des-
cribes that X is a citizen of country Y , city(X,Y ) describes
that city X is located in country Y , and capital(X,Y ) says
that X is the capital of Y ; born(X,Y ) and died express that
X is born in (died in) city Y .

citizen(X,Y )← born(X,A), city(A, Y ) [.84] (9)
citizen(X,Y )← born(X,A), capital(A, Y ) [.88] (10)

citizen(X,Y )← died(X,A), city(A, Y ) [.82] (11)

Even though, there is no direct logical entailment bet-
ween these rules, Rule 9 would entail Rule 10 if we would
have background knowledge that tells us that the capital re-
lation is more specific than the city relation. However, such
background knowledge is usually not available. Moreover,
if the given dataset is noisy, then the rule city(X,Y ) ←
capital(X,Y ) will have a confidence of less than 1. There
is a similar but weaker dependency between died(X,Y ) and
born(X,Y ) (many people die in the city where they are born)
which tells us that Rule 9 and Rule 11 are also not completely
independent. However, within a noisy and incomplete dataset
it is impossible to distinguish between (i) Rule 9 and Rule 10,
where it makes most sense to chose the maximum of the two
confidences, and (ii) Rule 9 and Rule 11, where it is more
appropriate to compute the marginal probability based on the
independence assumption of the rules bodies .

We apply a rather simple but efficient approach. We order
the candidates via the maximum of the confidences of all ru-
les that have generated the candidates. If the maximum score
of several candidates is the same, we order these candidates
via the second best rule that generates them, and so on, until
we find a rule that makes a difference. This approach might
rank an entity, for which two independent rules fire, too low,
while the ranking is not negatively affected if two rules fire
that have a strong dependency. Note also that the results of
this approach can be computed without grounding all relevant



WN18 WN18RR FB15 FB15-237 YAGO
Entities 40943 40559 14951 14505 123143
Relations 18 11 1345 237 37
Triples 141442 86835 483142 272115 1079040
Testset 5000 3134 59071 20466 5000

Table 1: Dataset characteristics.

rules. We start with high confident rules computing results of
lower confident rules until the correct order of the top-k ran-
king is determined. We also implemented a Noise-Or and
report about results. In the Noisy-Or setting we need to com-
pute for all rules whether or not they generate a candidate,
which is in many cases less efficient.

We define the confidence of a rule, roughly, as head and
body groundings divided by body groundings. According to
this definition a rule with many body groundings can have
the same confidence as a rule with only few body groundings,
e.g., 3/4 = 750/1000. Moreover, we will have usually many
rules with few groundings, especially rules with constants,
and few rules with many groundings. For that reason it can
happen that some rules with few groundings have a confi-
dence that is too high. In order to circumvent this, we add
a constant pc > 0 to the denominator as a kind of Laplace
smoothing. This can be understood as a pessimistic variant of
the standard confidence value. Rules with a large number of
groundings are only slightly affected, while rules with a low
number of groundings get a significantly lower confidence.

5 Experiments
We used in our experiments the FB15(k) dataset, its modi-
fied variant FB15-237, WN18, its modified variant WN18RR,
and YAGO03-10 (in short YAGO). The FB (WN) datasets
are based on a subset of FreeBase (WordNet). FB15 and
WN18 have been first used in [Bordes et al., 2013]. They
have been criticised in several papers: due to redundancies a
large fraction of testcases can be solved by exploiting rather
simple rules. Both FB15-237 [Toutanova and Chen, 2015]
and WN18RR [Dettmers et al., 2018] have been proposed as
modified variants where redundancies have been suppressed.
FB15-237 goes even a step further. It contains no test ca-
ses that can be solved with C rules with one body atom, even
though the training set shows regularities that induce these ru-
les. This makes FB15-237 a bit unrealistic and a hard testset
for a rule based approach. The dataset YAGO has been used
in [Dettmers et al., 2018] as additional dataset. An overview
on the datasets is given in Table 1. The numbers reported in
the first three lines refer to the training set. The last line refers
to the number of triples in the test set. Each test triple can be
divided into two test cases. In terms of triples and entities
(constants) YAGO03-10 is the largest dataset.

As in [Bordes et al., 2013] we compute the filtered hits@1
and filtered hits@10. In the following we simply refer to
these values without the adjective ’filtered’. We do not com-
pute the filtered MRR (mean rank reciprocal) exactly, because
our approach is not designed to compute complete rankings
but top-k rankings only. Instead of computing the exact va-
lue, we assume that any candidate which would be ranked at

a position >k is not a correct prediction. This results into a
lower bound of the filtered MRR, which we present in Table 2
prefixed with ≥. The exact value is usually slightly higher.

We have named our approach AnyBURL (Anytime
Bottom-Up Rule Learning). AnyBURL is written in Java
and requires no external libraries. The source code and da-
tasets, used in the experiments, can be found at http://web.
informatik.uni-mannheim.de/AnyBURL/. We conducted all
our experiments on a virtual machine with 4 cores (each 2400
MHz) and 16 GB RAM.

We have not made use of the validation sets to find data-
set specific parameter settings. For all our experiments we
used exactly the same parameter setting. We have chosen
the quality criteria Q to allow only those rules that generate
at least two correct predictions, which is a very lax criteria.
We have set the required saturation rate sat to 99%. We set
ts = 1 second, pc = 5, and s = 500, which is the sample
size that determines the precision of the confidence value. As
default setting we used the maximum aggregation strategy.
We have also conducted an experiment where we compared
this strategy against a Noisy-Or aggregation. We have made
two further modifications. Our implementation alternates be-
tween time spans where we sample only cyclic paths; and
time spans where we sample all possible paths. This enables
to use an algorithm that finds cycles more efficiently. Further,
we have stopped explicitly searching cyclic paths once we re-
ached the defined saturation for C rules of length 3, because
longer cyclic rules can be very costly in terms of runtimes.

5.1 Anytime Behavior and Runtime
We have to distinguish between the time required to learn the
rules and the time of applying them to solve the task. Obvi-
ously, the more time we spent in learning, the more rules we
learn; and the more rules we learn, the longer will be the time
required to apply these rules. Hits@1 and hits@10 results
are specified for all five datasets in Table 2 based on the rule
sets that have been learned after 10, 100, 1000, and 10000
seconds. For all datasets we observe a similar pattern. The
results are already surprisingly good after a 10 seconds lear-
ning phase. For the smaller datasets (WN18 and WN18RR)
these results are already as good as current state of the art re-
sults. When we learn rules for 100 and 1000 seconds (which
is less than half an hour) the results are further improved, and
this improvement is higher for larger datasets.

Learning rules for a long time (10000 seconds) can have
a slightly negative impact on the results. This is especially
the case for the datasets WN18 and FB15. These datasets are
dominated by redundancies which are reflected in C rules of
length 1. These rules can be found quickly at the beginning.
If we learn longer, it might happen that there are some very
specific rules among the very large set of learned rules that
create noise. However, this trend does not continue if we run
the tool even longer. We have also run AnyBURL on WN18
and FB15 for 20000 seconds and there were nearly no diffe-
rences compared to the results reported for the 10000 seconds
run (for instance, WN18 changed from 95.42 to 95.40).

For YAGO we show (i) the impact of the learning time on
the results quality (y-axis on the left), (ii) the time required for
applying the learned rules (projection to x-axis), and (iii) the

http://web.informatik.uni-mannheim.de/AnyBURL/
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Figure 2: Anytime Behaviour of AnyBURL on the YAGO dataset.

number of rules that have been learned (purple line, y-axis
on the right). The application time, which refers to the full
test set, is shown as projection to the x-axis. For example,
learning rules for 10 seconds, results in a hits@10 score of
55.3% and a rule set which consists of 4531 rules. It requires
42 seconds to apply this rule set to the 5000 test cases of the
dataset. Note that the x-axis and the y-axis on the right use a
logarithmic scale.

Figure 2 shows that AnyBURL starts at a high level and
improves the results in terms of a logarithmic function. The
set of learned rules seems to grow nearly linear with a slight
reduction the longer we run AnyBURL. AnyBURL reaches a
saturation of 0.99 for C rules of length 3 already after 84 se-
conds, while the saturation for AC1 and AC2 rules of length
1 is not reached within the overall time span of 30000 se-
conds. This is obviously caused by the high number of con-
stants in the YAGO dataset. This indicates that the good
results achieved in short time are mostly based on C rules,
while the small but steady improvements that follow are ba-
sed on AC1 and AC2 rules.

The time for applying the rules is for small rule sets higher
than the time required for learning them on the whole test set.
However, if the rules set gets larger less additional time for
the prediction is required. A rule set that is learned in 1000
seconds, requires also around 1000 seconds to be applied. For
larger rules sets the learning time dominates the application
time. Note also that the application time is smaller for the
four other datasets.

5.2 Comparison with Other Approaches
The first block in Table 2 lists the results of current state of
the art completion techniques using embeddings. We have
selected five models, which achieved very good results and
have been published within the last year at top conferences.
The results that AnyBURL achieves after a 1000 seconds le-
arning phase are at the same level and sometimes slightly bet-
ter than most of these models. AnyBURL has, for example,
better hits@1, hits@10, and MMR results than ConvE [Dett-
mers et al., 2018] on all datasets except FB15-237, where
the results of AnyBURL are only slightly worse. AnyBURL
outperforms SimplE [Kazemi and Poole, 2018] already when
using the rules that have been learned after 10 seconds.

Exceptionally, the ComplEx-N3 (reciprocal) model propo-
sed in [Lacroix et al., 2018], originally introduced in [Trouil-
lon et al., 2016], achieves better results than any other model
including AnyBURL. This model requires 485 seconds × 25
epochs (100 epochs) = 12125 (48500) seconds for a single
run with a fixed set of hyper parameters on YAGO. Around
half the time is required for FB15.1 The hyper parameters are
determined in a grid-search over 28 combinations, which re-
quires in the worst case to multiply by 28, i.e. 28 × 12125
= 339500 ≈ 4 days, even though an early stopping criteria
might save effort. While we ran AnyBURL on a standard
laptop, the ComplEx-N3 runtimes are based on the use of a
Quadro GP100 GPU.

The second block in Table 2 presents results for two al-
ternative rule learning systems called RuleN and AMIE+.
AMIE+ uses a complete top down approach and a similar lan-
guage bias as RuleN. Within its language bias it constructs all
rules of a certain length using a support threshold as a pruning
mechanism. RuleN learns C rules and a rather specific type
of constant rules. It uses sampling techniques that are similar
to but less general than the approach we proposed. Both sys-
tems have been executed in [Meilicke et al., 2018] in an envi-
ronment similar to ours. None of the systems has an anytime
behaviour, however, the parameters have been chosen dataset
specific to exploit a time frame of 10 hours as good as possi-
ble. Thus, the results are roughly comparable to the 10000s
results of AnyBURL. With the minor exception of the WN18
dataset, AnyBURL generates significantly better results than
AMIE and RuleN. For RuleN this is partially related to its in-
ability to learn certain rules. The improvements over AMIE
are probably related to the sampling strategy used within the
bottom-up approach. RLvLR [Omran et al., 2018] is a rule
learner that uses embeddings to guide the rule extraction pro-
cess in order to reduce the search space. For this approach
results are only available for FB15-237, where RLvLR achie-
ves hits@10 of 39.3% and an MMR of 0.24. These results
are similar to the results of AMIE and RuleN.

In the last row we compare the default Maximum aggre-
gation against the Noisy-Or showing the difference Noisy-Or
minus Maximum. The numbers are based on applying the
rules learned after 1000 seconds. Noisy-Or performs on ne-
arly all datasets clearly worse. We observe the highest drop
on the datasets WN18 and FB15. Both datasets contain many
redundancies and as a result a candidate might be proposed
by several highly dependent (equivalent) rules, which distorts
the generated candidate ranking.

6 Related Work
We discussed AMIE and RuleN in the section above. Ru-
DiK [Ortona et al., 2018], an example for another rule lear-
ner, can learn both positive and negative rules (constraints).
Contrary to our approach, RuDiK is designed to find a small
set of rules that cover the majority of positive and as few ne-
gative examples as possible. This differs from our objective,
where we try to learn every possible rule that might be rele-
vant for creating a top-k candidate ranking.

1Numbers reported in https://github.com/facebookresearch/kbc.

https://github.com/facebookresearch/kbc


WN18 WN18RR FB15 FB15-237 YAGO03-10
Approach h@1 h@10 MRR h@1 h@10 MRR h@1 h@10 MRR h@1 h@10 MRR h@1 h@10 MRR
SimplE [Kazemi and Poole, 2018] 93.9 94.7 94.2 66.0 83.8 72.7
ConvE [Dettmers et al., 2018] 93.5 95.5 94.2 39 48 46 67.0 87.3 74.5 23.9 49.1 31.6 45 66 52
ComplEx-N3 [Lacroix et al., 2018] 96 95 57 48 91 86 56 37 71 58
R-GCN+ [Schlichtkrull et al., 2018] 69.7 96.4 81.9 60.1 84.2 69.6 15.1 41.7 24.9
CrossE [Zhang et al., 2019] 74.1 95.0 83.0 63.4 87.5 72.8 21.1 47.4 29.9
AMIE+ [Galárraga et al., 2015] 87.2 94.8 35.8 38.8 64.7 85.8 17.4 40.9
RuleN [Meilicke et al., 2018] 94.5 95.8 42.7 53.6 77.2 87.0 18.2 42.0
RLvLR [Omran et al., 2018] 39.3 24
AnyBURL, 10s 94.2 94.9 ≥94 43.2 52.7 ≥46 79.6 83.8 ≥81 13.4 25.9 ≥17 33.4 55.3 ≥40
AnyBURL, 100s 94.6 95.9 ≥95 44.5 54.9 ≥48 80.8 87.6 ≥83 19.6 41.0 ≥26 37.6 59.4 ≥44
AnyBURL, 1000s 93.9 95.6 ≥95 44.6 55.5 ≥48 80.4 89.0 ≥83 23.0 47.9 ≥30 42.9 63.9 ≥49
AnyBURL, 10000s 93.5 95.4 ≥94 44.1 55.2 ≥47 79.6 88.7 ≥82 23.3 48.6 ≥31 47.7 67.3 ≥54
∆ Noisy-Or vs. Max Aggregation -12.5 -1.7 -9 -8.8 -0.3 -6 -25.5 -9.4 -10.1 -1.1 +/-0 -0.6 -1.2 +0.1 +/-0

Table 2: Comparing our approach against current state of the art results. The runtimes of AnyBURL refer to rule learning only. Results have
been taken from the publications listed in the first column. An exception are the results for AMIE+ published in [Meilicke et al., 2018].

The Path Ranking Algorithm [Lao et al., 2011] is based on
sampling paths that correspond to C rules. While the sam-
pling technique of AnyBURL is inspired by this approach,
AnyBURL can learn more expressive rules than PRA. In [Lao
et al., 2015] the authors proposed an extension, that can also
deal with instances (constants). However, the rules that are
supported by this extension are similar to the conjunction of
AC1 rules of length 1 and C rules of arbitrary length, while
AC1 and AC2 on their own are, upon our understanding,
not supported. We have argued above that such a conjunction
would result in a significantly larger search space, which we
try to avoid with a strict language bias.

Another interesting approach is Gaifman models [Niepert,
2016], where neighbourhoods are sampled instead of paths.
While this allows in principle to learn every possible rule (if
the neighborhood is large enough), the application that the
authors report about is based on a rather restrictive language
bias that covers only a small fraction of the rules that we le-
arn. We introduced a language bias and an efficient sampling
technique that is tightly coupled, while sampling in the con-
text of Gaifman models is a means to create examples that fit
(in principle) against any language bias.

The majority of existing approaches for knowledge graph
completion are based on the concept of embeddings. There is
also a family of approaches that try to combine embeddings
and rules (see [Wang et al., 2017] for a survey). An example
is RLvLR [Omran et al., 2018], for which we added some
results above, and the system Ruge [Guo et al., 2018], which
uses learned rules to inject new training examples with soft
labels into the process of learning the embedding. The aut-
hors report about results for FB15, which are worse than the
AnyBURL 100 seconds learning results. We believe that the
benefits of combining rules and embeddings can only be un-
derstood, if we know first how far one can get with each met-
hod on its own. With our work, we show that rules on their
own perform surprisingly well, which should not be neglected
in further work on combining embeddings and rules.

7 Conclusion
We have proposed an anytime algorithm for learning rules
from knowledge graphs by following the bottom-up para-

digm. We applied our approach, called AnyBURL, to five
different and frequently used datasets. AnyBURL generates
in short time results that are as good and better than many
recent state of the art techniques, while using only limited re-
sources (both in terms of memory and computational power).
Due to sampling, the algorithm learns within the chosen lan-
guage bias rules with high support first. Opposed to this, a
top down approach as AMIE has to learn all rules of a certain
type to ensure that these rules are covered. Compared to la-
tent representation models AnyBURL has several advantages
in common with other rule based approaches:
• The candidate ranking can be explained in terms of the

rules that generated this ranking. Such an explanation is
easy to understand and can even be related to statistical
evidence, e.g., Ed speaks Dutch, because he is married
to someone who is born in Amsterdam, and people mar-
ried to someone born in Amsterdam speak Dutch with a
confidence of 82%. Dutch is the highest ranked candi-
date for the language that Ed speaks. English is on the
second rank with a confidence of 67%, because . . .

• The generated model (= rule set) can be partially reused
for a dataset using the same predicates and an overlap-
ping set of constants. Rules without constants can be
definitely reused, and if (frequently used) constants like
london or female appear also in the new dataset, rules
that contain such constants can also be reused.
• A rule based approach does not require to learn data-

set specific hyper parameters. We know that AnyBURL
has also several parameters that have an impact on its
behaviour. However, the impact of these parameters is
transparent and there are less dependencies with data-
set specific characteristics. Note that we run AnyBURL
with the same parameter setting on all five datasets.

While these advantages are well known, their recognition
had only a limited effect in motivating current research to de-
velop symbolic approaches for knowledge graph completion.
One reason might have been the prejudice that rule learning
cannot be applied to larger datasets efficiently. With our re-
sults we have shown that the opposite is the case.
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