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Abstract. Despite its complexity, the minimum cost lifted multicut
problem has found a wide range of applications in recent years, such
as image and mesh decomposition or multiple object tracking. Its solu-
tions are decompositions of a graph into an optimal number of segments
which are optimized w.r.t. a cost function defined on a superset of the
edge set. While the currently available solvers for this problem provide
high quality solutions in terms of the task to be solved, they can have long
computation times for more difficult problem instances. Here, we propose
two variants of a heuristic solver (primal feasible heuristic), which greed-
ily generate solutions within a bounded amount of time. Evaluations on
image and mesh segmentation benchmarks show the high quality of these
solutions.

1 Introduction

This paper tackles the fast, heuristic optimization of a graph decomposition
problem, the minimum cost lifted multicut problem. The minimum cost lifted
multicut problem has first been proposed in [1], where its promise for the de-
composition of pixel grid graphs as well as 3D shape meshes has been shown.
It has been successfully applied in fields like multiple object tracking [2] and
motion segmentation [3] and became known to produce state-of-the-art results
on the segmentation of electron microscopy stacks of neuronal structures [4, 5].
It is a generalization of the better-known minimum cost multicut problem [6,7]
(also referred to as correlation clustering problem). For example, formulations
of the image segmentation problem [8] as minimum cost multicut problem have
been considered in [9–23]. This formulation is attractive because the feasible
solutions of the multicut problem relate one-to-one to the decompositions of a
graph, and the multicut problem does not favor balanced solutions a priori [24].
Furthermore, multicut algorithms are easy to use: They take as input a graph
and, for every edge, a real-valued cost of the incident vertices being in distinct
components, and output a 01-labeling of the edges which induce a decomposition
of the graph. Assigned real-valued cost of the incident vertices ideally reflects
the logit of the probability of the edge being cut, i.e. log 1−pe

pe
+ log 1−p∗

p∗ , for
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a cut probability pe at edge e, and a prior probability p∗ ∈ (0, 1) of cuts. Cut
probability pe is generated based on the estimated boundary [8] at edge e.

Generalizations of the minimum cost multicut problem in terms of higher-
order edges have been considered in [3,17,20]. In contrast to explicit higher-order
terms, the generalization to minimum cost lifted multicuts allows introduction of
additive edge costs, which alter the cost of a specific solution without modifying
the set of feasible solutions. In practice, this property turned out to be useful for
example in image segmentation, where it is easy to decide for a pair of distant
points whether they are in distinct components, yet potentially hard for a pair of
neighboring points. The minimum cost lifted multicut problem enables to encode
this long range information directly in edge costs.

While this formulation is extremely useful, it turned out to be truely harder
than the (NP-hard) minimum cost multicut problem [25]. In practice, it can
be solved using heuristic solvers such as KLj [1] or Fusion Moves [4]. For large
problem instances such as the pixel-wise image segmentation instances from [1],
such solvers can take several minutes to converge or might require greedy pre-
clustering.

In this paper, we propose a modification of a very simple primal feasible
heuristic, the greedy additive edge contraction (GAEC) algorithm from [1]. The
proposed algorithm produces results that are close to the ones generated by
KLj [1] with a computation time similar to the one from GAEC [1] and a guar-
anteed worst case complexity. We evaluate the proposed heuristic on instances of
(1) image segmentation problems on the BSDS-500 dataset [8], (2) mesh segmen-
tation problems on the Princeton Mesh Segmentation benchmark [26], and (3),
the challenging 3D segmentation instance from the ISBI 2012 challenge on seg-
mentation of neuronal structures from electron microscopy images used in [4,5].
In all scenarios, the proposed algorithm can generate high quality results at a
significantly reduced computation time.

2 Related Work

A canonical approach to solving instances of the minimum cost multicut problem
is to solve the linear programming relaxation of the multicut polytope [6] as for
example proposed in [27]. This procedure, with a subsequent thresholding to
produce feasible solutions, has found wide application, e.g. in [16, 19, 20]. Yet,
despite its NP-hardness, the minimum cost multicut problem has been solved to
optimality for some practically relevant instances for example in [11,28]. Yet, for
larger problem instances, heuristic solvers such as Cut, Glue & Cut (CGC) [15],
KL [29, 30] and its variant KLj [1], or the Fusion Moves approach [14] need to
be employed. They have shown to generate good solutions in practice although
no theoretical guarantee can be provided.

The latter two solvers, KLj [1] and Fusion Moves [4], can also be applied
to the minimum cost lifted multicut problem which is of interest in this paper.
Both have proven to provide good solutions in practice, generating results on
par with the state-of-the-art in image segmentation in terms of the BSDS-500
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benchmark [8], the mesh decomposition problem posed by the Princeton bench-
mark [26] and the ISBI2012 challenge on segmentation of neuronal structures in
image stacks [31, 32]. For problem instances for example on the image segmen-
tation task, these heuristics still need several minutes to converge, while Fusion
Moves [4] has an edge on KLj in terms of computation time, at the price of a
greedy data pre-clustering.

The proposed approach is built on the fully greedy approach GAEC which
has been proposed as an initialization procedure for KLj in [1]. As GAEC, KLj
and Fusion Moves, it can not provide any bounds for the proposed solution.
However, in contrast to KLj and Fusion Moves, it can provide a guaranteed
worst case complexity. In practice, it generates results with a computation time
slightly higher than GAEC while the resulting objective values can be close to
the ones from KLj.

3 Optimization Problem

In this paper, we propose a heuristic solver for the minimum cost lifted multicut
problem [1]. This problem is of interest, because its feasible solutions relate one-
to-one to decompositions of a graph and because it provides a principled way
to define a more general cost function decompositions than the minimum cost
multicut problem. A decomposition of the graph G = (V,E) is any partition Π of
the vertices V such that every component V ′ ∈ Π induces a connected subgraph
of G. In the following, we define the minimum cost multicut problem [6, 7] and
the minimum cost lifted multicut problem [1,33].

3.1 Minimum Cost Multicut Problem

Given any graph G = (V,E), a cost function c : E → R and edge labels
y : E → {0, 1}, the optimization problem stated in (1) is an instance of
the minimum cost multicut problem with respect to the graph G and costs c.

min
y∈{0,1}E

∑
e∈E

ceye (1)

s.t. ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ .

The inequality constraints stated over all cycles of G ensure that the edge
labeling y induces a decomposition of G. It has been shown to be sufficient to
ensure these constraints on the subset of all chordless cycles in [6]. The minimum
cost multicut problem allows to assign a cost or reward (ce) for every edge e ∈ E
to be cut.
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3.2 Minimum Cost Lifted Multicut Problem

The minimum cost lifted multicut problem is defined w.r.t. a graph G = (V,E)
and a graph G′ = (V,E′) with E ⊆ E′ and a cost function c′ : E′ → R which
allows to assign, for every edge in E′ a cost or reward for being cut. Its feasible
solutions relate one-to-one to decompositions of the graph G. Rigorously, for any
undirected graph G = (V,E), any F =

(
V
2

)
\ E and any c′ : E ∪ F → R, the

linear program written in Eq. (2) - (5) is an instance of the minimum cost lifted
multicut problem w.r.t. G, F and c′.

min
y∈{0,1}E′

∑
e∈E′

c′eye (2)

s.t. ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (3)

∀vw ∈ F ∀P ∈ vw-paths(G) : yvw ≤
∑
e∈P

ye (4)

∀vw ∈ F ∀C ∈ vw-cuts(G) : 1− yvw ≤
∑
e∈C

(1− ye) (5)

The linear inequalities in Eq. (3) - (5) constrain y such that {e ∈ E|ye == 1}
is a multicut of G. They ensure further that, for any edge uv ∈ F, yuv = 0 iff
there exists a path (uv-path) in the original graph G along which all edges are
connected, i.e. labeled 0.

The set F of lifted edges is introduced to facilitate the modification of the
cost function of the multicut problem without modifying the set of feasible solu-
tions [1]. This is most intuitive in image segmentation. There, the connectivity
should be defined on the image grid: two pixels in the same cluster should be
connected in the image domain. However, for pairs of directly neighboring pix-
els, it is hard to decide whether they belong to the same segment or to different
segments (due to blurred edges/textures). For pixels at a certain distance, it is
easier to recognize boundaries separating one from the other. The lifted edge set
F allows to introduce such information between distant pixels without modifying
the connectivity [1].

4 Objectives

To generate fast solutions to minimum cost lifted multicut problems, we inves-
tigate the GAEC solver proposed in [1]. While other heuristic solvers such as [4]
generate better solutions in terms of the resulting energy, GAEC is one of the
fastest solvers currently available, although it operates directly on the nodes of
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Fig. 1: For the BSDS-500 [8] image on the left (average ground-truth annotations
depicted below), we show intermediate states during the execution of the GAEC
solver [1] (top) and the proposed BEC-cut solver (bottom) after 20 %, 40%, 60%
and 80% of the total merges have been executed. GAEC tends to generate large
segments that merge points across object boundaries. These merges can not be
“repaired”. In contract, BEC-cut generates and grows many segments simulta-
neously. It starts generating these segments in vicinity to the object boundaries.

the original graph without any local pre-clustering. GAEC provides determinis-
tic solutions created in a greedy procedure of edge contractions and thus provides
low computation times even for large and difficult problem instances [1]. While
GAEC provides relatively low energy solutions on minimum cost multicut prob-
lems, it has major difficulties finding acceptable solutions to minimum cost lifted
multicut problems. Where does this discrepancy come from? To analyze this ef-
fect, we visualize intermediate GAEC solutions in Fig. 1. We observe that large
clusters are built pretty quickly. They tend to grow by adding small clusters or
isolated nodes. In this scenario, long range repulsive edges are not in the scope
of the greedy optimization until almost all nodes have been merged. Thus, the
“difficult parts” of the problem, i.e. those parts possibly causing conflicts w.r.t.
the objective, are only considered when most of the nodes have already been
irreversibly merged.

We conclude that the GAEC algorithm would benefit from two aspects: (1)
avoid creating very unbalanced clusters early on, such that repulsive edges are
in the scope of intermediate regions early on, and (2) use information about
repulsive edges directly as a criterion for merges.

5 Proposed Approach

We want to base our heuristic on the fast GAEC solver from [1] and follow a
similar, greedy merging scheme such that running times remain affordable for
large and difficult problem instances. In order to tackle aspects (1), avoid creating
very unbalanced clusters early on, and (2), use information about repulsive edges
in the merge criterion, we define an improved ranking scheme for the next best
edge to be contracted. In the basic version of our proposed heuristic, we only
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Algorithm 1: GAEC [1]

1 E := E , E ′ := E′

2 V := V
3 foreach ab ∈ E ′ do
4 χab := cab

5 while E 6= ∅ do
6 ab := argmax

a′b′∈E
χa′b′

7 if χab < 0 then
8 break

9 contract ab in G and G′
10 foreach ab 6= ab′ ∈ E ′ do
11 χab′ := χab′ + χbb′

Algorithm 2: BEC

1 E := E , E ′ := E′

2 V := V
3 foreach ab ∈ E ′ do
4 χab := cab

5 while E 6= ∅ do
6 ab := argmax

a′b′∈E

χa′b′
|a′|+|b′|

7 if χab < 0 then
8 break

9 contract ab in G and G′
10 foreach ab 6= ab′ ∈ E ′ do
11 χab′ := χab′ + χbb′

tackle aspect (1) by proposing a greedy “Balanced Edge Contraction” scheme.
Instead of using the plain edge potentials as a merge criterion as in GAEC
(see Alg. 1, line 6), we propose to normalize these potentials by the size of the
components to be merged (Alg. 2, line 6). Note that this normalization only
affects the order in which attractive edges are merged and not the actual edge
potentials nor the cut objective.

In order to tackle aspect (2), we formulate a secondary merge criterion. Ul-
timately, we want to find a cut which minimizes the total energy of the cut
(not maximize the energy of the joined components). We are motivated to en-
courage the solver to pursue this objective during the greedy optimization: We
want to make join decisions that minimize the outgoing potentials of resulting
components, i.e. minimize the intermediate cut.

To formalize this, lets look at the graph Gd = (V,Ed) defined on G′ (sec-
tion 3.2), and assign to every vertex v in V a unary potential dv =

∑
{b|evb∈E′} cvb,

i.e. the degree of v. The outgoing potentials of a component in G resulting from
joining two vertices u and v can be computed as du+dv−2cu,v. Then, we define
for edges uv ∈ Ed, edge weights cdu,v = du + dv − 2cu,v. Minimizing these “dual”
edge weights is used as a secondary join criterion in Alg. 3.

This modification of the order in which segments are agglomerated affects
the intermediate stages of the solution during the optimization. Fig. 1 (bottom)
shows such intermediate optimization stages after 20%, 40%, 60% and 80% of
the total merges have been computed by the proposed algorithm. Unlike GAEC,
it generates many small node agglomerations along both sides of the boundaries.
Thus, repulsive terms on the boundary are in scope early on.

5.1 Algorithms

Alg. 2 and Alg. 3 are adaptations of greedy agglomeration, more specifically,
greedy additive edge contraction (Alg. 1). Both take as input an instance of the
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Fig. 2: Exemplary computation of ζ
from χ before (top) and after (bot-
tom) contraction of components a
and b. χ encodes the sum of outgo-
ing costs of a component.

Algorithm 3: BEC-cut

1 E := E , E ′ := E′

2 V := V
3 foreach ab ∈ E do
4 χab := cab

5 foreach a ∈ V do
6 ζa :=

∑
{b|eab∈E′}

cab

7 while E 6= ∅ do
8 S := argmax

a′b′∈E

χa′b′
|a′|+|b′|

9 ab := argmin
a′b′∈S

ζa′+ζb′−2χa′b′
|a′|+|b′|

10 if χab < 0 then
11 break

12 contract ab =: ā in G and
G′

13 ζā = ζa + ζb − 2χab
14 foreach ab 6= ab′ ∈ E ′ do
15 χab′ := χab′ + χbb′

lifted multicut problem (LMP) defined by G = (V,E), F and c : E ∪ F → R
(Eq. (2) - (5)) and construct as output a decomposition of the graph G. Both
algorithms maintain a decomposition of G, represented by graph G = (V, E)
whose nodes a ∈ V are components of G and whose edges ab ∈ E connect any
components a and b of G which are neighbors in G and χ : E → R is an ordered
sequence of costs for feasible joins. Objective values are computed w.r.t. the
larger graph G′ = (V,E ∪ F ) and c : E ∪ F → R.

Balanced Edge Contraction (BEC) Starting from the decomposition into
single nodes, in every iteration, a pair of neighboring components is joined for
which the join decreases the objective value. While for the basic GAEC algo-
rithm, an edge is picked such that the objective value decreases maximally, we
propose to weight the prospective gain by the size of the components. This
weighting encourages components of similar size to merge earlier than compo-
nents of different size if both merges are advantageous. Intuitively, this should
lead to several balanced clusters (as opposed to one large cluster and many sin-
gle nodes) at intermediate optimization states. If no join strictly decreases the
objective value, the algorithm terminates.

BEC-cut Starting from the decomposition into single nodes, at every itera-
tion, a pair of neighboring components is joined for which the join decreases
the objective value. If a unique pair of neighboring components exists whose
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Fig. 3: Depicted above is an evaluation of the heuristics GAEC, (Alg. 1), KLj [1]
and the proposed BEC (Alg. 2) and BEC-cut (Alg. 3) on the large and difficult
lifted multicut problem instances from [1] with lifting radius 20 (LMP20). These
instances address the image decomposition problem posed by the BSDS-500
benchmark [8]. On the left, the variation of information (VI), split additively
into a distance due to false cuts and a distance due to false joins is depicted
(lower is better), on the right, the accuracy of boundary detection, split into
recall and precision is shown (higher is better). Error bars depict the 0.25 and
0.75-quantile. Result of the proposed heuristics figure in between those of the
solver GAEC and KLj in both metrics. In the region metric VI, results of the
proposed solvers BEC and BEC-cut are very close to results of the KLj.

join strictly decreases the size-weighted objective value maximally, this join is
executed. From the set of all possible joins that decrease the weighted objective
value maximally, the join is executed which minimizes the sum of outgoing costs,
i.e. the prospective value ζ of the resulting component. Compare Fig.2 for an
illustration of the computation of ζ. If no join strictly decreases the objective
value, the algorithm terminates.

It is important to notice that the balancing criteria in our heuristic methods
never affects the original objective function, which is defined in section 3.2.

Implementation. Our implementation is built upon GAEC [1]. As GAEC, it
uses ordered adjacency lists for the graph G and for a graph G′ = (V, E ′) whose
edges ab ∈ E ′ connect any components a and b of G for which there is an edge
vw ∈ E ∪ F with v ∈ a and w ∈ b. It uses a disjoint set data structure for the
partition of V and a priority queue for an ordered sequence of costs χ : E → R
of feasible joins, with a secondary sorting criterion χ̄ : E → R, χ̄ab = ζa+ζb−2χab

|a|+|b|
defined on ζ for Alg. 3 (comp. line 9). As GAEC, its worst-case time complexity
O(|V |2 log |V |) is due to a sequence of at most |V | contractions, in each of which
at most deg G′ ≤ |V | edges are removed, each in time O(log deg G′) ∈ O(log |V |).
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Fig. 4: Depicted above is a comparison of Alg. 3 (BEC-cut) with GAEC and
KLj [1]. Every point corresponds to one instance of the lifted multicut problem [1]
defined w.r.t. one test image in the BSDS-500 benchmark [8] with lifting radius
10 (left) and 20 (right). The computation times of the proposed algorithm BEC-
cut are close to the ones from GAEC while the resulting energy is improved.

6 Experiments

We evaluate the proposed heuristics on types of problem instances and w.r.t.
three different tasks: lifted pixel-grid graphs [1] defined on the image segmen-
tation problems of the BSDS-500 [8] benchmark, lifted graphs on 3D shape
meshes [1] defined on the Princeton Mesh Segmentation benchmark [26] and the
lifted superpixel adjacency graph [5] defined on the ISBI 2012 challenge data, a
volumetric electron microscopy recording of neuronal structures [31,32].

6.1 Image Decomposition

On the image segmentation task posed by the BSDS-500 benchmark [8], we apply
the proposed solvers BEC 2 and BEC-cut 3 to the minimum cost lifted multicut
instances proposed in [1]. These problem instances represent pixel grid graphs.
Lifted “long range” edges are inserted to connect all pixels within a pre-defined
pixel radius to provide more “global” information to the optimization problem.
Lifting radii of 20 pixels showed best performance in [1].

Fig. 3 shows the results of the proposed solvers in comparison to GAEC and
KLj initialized with GAEC in terms of the variation of information (VI) [34]
(Fig. 3 left, lower is better) and the boundary precision and recall (Fig. 3 right,
higher is better). For the evaluation on these metrics results at different levels
of granularity need to be generated. This can be done by modifying the prior
probability of a cut in the lifted multicut problem instances. Every point in the
plots of Fig. 3 shows, for one cut prior and algorithm, the average over all test
images in the BSDS-500 benchmark.
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Fig. 5: Qualitative segmentation results of the proposed BEC-cut solver on in-
stances from the BSDS-500 benchmark. The lifted multicut problems are com-
puted with lifted edges between all points at distance less than 10.

While BEC and BEC-cut show almost equivalent performance, the improve-
ment over GAEC [1] especially on the region metric VI is evident.

Fig.4 shows scatter plots of the computation times and resulting objective
values for the algorithms GAEC and KLj [1] and the proposed BEC-cut. With
respect to the objective value, BEC-cut yields a clear improvement over GAEC
while it is significantly faster than KLj.

Some of the qualitative results are shown in Fig. 5 for the proposed BEC-
cut solver and lifting radius 10. Although its greedy merging procedure, it can
produce nicely closed contours on these problem instances.

6.2 Mesh Segmentation

In this section, we evaluate the proposed methods on the Princeton Mesh Seg-
mentation benchmark [26] which provides 380 meshes consisting 19 object cat-
egories with human-generated ground-truths [26].

On this dataset, the instance of the minimum cost lifted multicut problem
for each mesh is generated based on Keuper et al. [1]. More specifically, the local
edge costs for e ∈ E are computed using curvatures and dihedral angle features
which are computed based on the mesh data. The lifted edges are then inserted
up to a fixed node distance of 70 (defined on the graph) and for cut prior 0.55 as
proposed in [1] using their code 1. Consequently, the created problem instances
are solved by the proposed solvers. Some of the qualitative results for success and
failure cases for the mesh segmentations are depicted in Fig. 8 and 7, respectively.

Tab.1 shows a comparison of the resulting objective functions and the con-
sumed optimization time of the different approaches. On this dataset, the opti-
mization based on KLj when it is initialized with either GAEC or BEC converges

1 https://www.mpi-inf.mpg.de/fileadmin/inf/d2/levinkov/iccv-2015/code.tar.gz
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Table 1: Average computation time and objective value of the different solvers
on the Princeton Mesh Segmentation Benchmark.

GAEC [1] KLj-GAEC [1] BEC BEC-cut KLj-BEC-cut KLj-BEC

Avg. Comp. time [s] 576 755 589 574 797 755

Avg. Objective Value
(lower is better)

-17840450 -18988930 -18484140 -18057480 -18991920 -18989332

Fig. 6: First frame of the stack in the test data of ISBI 2012 with the correspond-
ing segmentation boundaries are shown. The results for this dataset are acquired
with BEC-cut solver.

surprisingly fast. This might be an indication for a meaningful initial segmenta-
tion in these cases. Among the greedy heuristics BEC yields the lowest objective
values. Initializing KLj with the proposed BEC yields a better objective value
than KLj initialized with GAEC [1].

Tab. 2 provides a comparison between different solvers in terms of Rand’s
Index (RI) (higher is better) and Variation of Information (VI) (lower is better).
In addition to report the plain results of our proposed solvers, we evaluate the
quality of solutions from KLj initialized with BEC, i.e. KLj-BEC. The iterative,
local move making heuristic KLj [1] is known to benefit from good initializations.

The evaluation shows that both proposed heuristics outperform GAEC. Specif-
ically, BEC yields an improvement of 0.05 on the RI and a decrease of 0.08 in
the VI. On this dataset, BEC performs better than BEC-cut. In fact, it yields
a RI value close to the one from KLj-GAEC with the same lifting parameters.
KLj, initialized with BEC yields slightly better results than KLj initialized with
GAEC in terms of the VI. The column “KLj-GAECopt” in Tab. 2 corresponds
to the results from Keuper et al. [1], which are obtained by KLj-GAEC when
the lifting radius and cut prior were optimized per instance. KLj, initialized by
BEC almost meets these results.
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Table 2: Resulting RI and VI score for the 3D mesh segmentation instances of the
Princeton Mesh Segmentation Benchmark [26]. We evaluate the proposed solvers
BEC and BEC-cut and compare to GAEC [1] and KLj [1] initialized by GAEC.
We also evaluate KLj initialized with our results from BEC. “KLj-GAECopt”
represents the results from Keuper et al. [1] when the lifting radius and cut
prior were optimized per instance.

GAEC [1] BEC BEC-cut KLj-GAEC [1] KLj-BEC KLj-GAECopt [1]

RI VI RI VI RI VI RI VI RI VI RI VI

Human 0.77 1.90 0.84 1.77 0.85 1.74 0.86 1.63 0.86 1.60 0.87 1.79
Cup 0.83 0.53 0.88 0.44 0.86 0.45 0.88 0.40 0.89 0.37 0.90 0.39
Glasses 0.61 1.38 0.82 0.85 0.78 1.04 0.84 0.78 0.84 0.77 0.90 0.68
Airplane 0.89 0.93 0.91 0.92 0.91 0.86 0.91 0.84 0.91 0.85 0.92 0.83
Ant 0.93 0.70 0.97 0.48 0.96 0.52 0.97 0.43 0.97 0.44 0.98 0.42
Chair 0.85 0.85 0.92 0.67 0.89 0.84 0.92 0.58 0.92 0.58 0.93 0.55
Octopus 0.96 0.41 0.97 0.41 0.97 0.44 0.97 0.37 0.97 0.37 0.98 0.33
Table 0.87 0.48 0.91 0.40 0.83 0.63 0.93 0.29 0.93 0.29 0.94 0.29
Teddy 0.92 0.76 0.93 0.76 0.92 0.78 0.95 0.55 0.95 0.55 0.96 0.50
Hand 0.67 1.75 0.80 1.47 0.76 1.72 0.84 1.23 0.84 1.23 0.85 1.32
Plier 0.72 1.38 0.84 1.12 0.81 1.19 0.88 0.93 0.91 0.85 0.93 0.84
Fish 0.73 1.20 0.75 1.26 0.76 1.30 0.80 1.12 0.80 1.11 0.80 1.09
Bird 0.90 1.01 0.92 0.98 0.91 1.01 0.92 0.91 0.92 0.91 0.93 0.99
Armadillo 0.88 1.88 0.91 1.75 0.90 1.87 0.91 1.63 0.91 1.62 0.92 1.48
Bust 0.57 2.12 0.66 2.32 0.63 2.46 0.68 2.29 0.68 2.29 0.69 2.25
Mech 0.80 0.66 0.81 0.72 0.80 0.66 0.84 0.60 0.84 0.59 0.84 0.59
Bearing 0.79 0.76 0.82 0.75 0.83 0.70 0.84 0.69 0.84 0.69 0.84 0.69
Vase 0.77 1.02 0.80 1.06 0.77 1.13 0.84 0.87 0.84 0.87 0.84 0.87
FourLeg 0.81 1.94 0.82 1.98 0.81 2.04 0.83 1.87 0.83 1.89 0.84 1.72

Average 0.81 1.14 0.86 1.06 0.84 1.13 0.88 0.95 0.88 0.94 0.89 0.93

6.3 ISBI 2012 Challenge

In the ISBI 2012 challenge, a stack of electron microscopy images of neuronal
structures [31, 32] is provided for segmentation. The images are recorded by a
serial section transmission electron microscope from the Drosophila larva ventral
nerve cord.

We applied the proposed BEC and BEC-cut solvers to the instance of the
minimum cost lifted multicut problem defined in [5]. The instance is based on
a superpixel adjacency graph, i.e. every node corresponds to a superpixel and
is connected to its direct neighbors. An additional lifted edge set encodes long
range information. All edge weights are learned from training data using two
random forest classifiers, one of them is trained to predict whether two adjacent
superpixels should be assigned to the same cluster, the other one learns this
prediction for non-adjacent superpixels. The trained classifiers are used to assign
weights to the local and lifted edges, respectively. Tab. 3 shows results we achieve
on this data with our heuristic solvers BEC and BEC-cut. At a significantly
reduced computation time, we can get results close to the state-of-the-art in
terms of objective value as well as segmentation quality. Fig. 6 represents the
first frame in the stack of the test data from ISBI 2012 with the corresponding
segmentation boundaries which are resulted from the proposed BEC-cut solver.
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Table 3: Comparison of the objective value and run time of our proposed solvers,
BEC and BEC-cut with Fusion Move algorithm with the Randomized proposal
generator (FM-R) [4] are provided. The results are generated based on the de-
fined minimum cost lifted multicut problem for ISBI 2012 Challenge [31, 32].
Leader board: http://brainiac2.mit.edu/isbi challenge/leaders-board-new

Algorithm Comp. time [s]
Objective Value
(lower is better)

V Rand V Info

FM-R [4] 10.43 -1.948524 0.9822 0.9884
BEC 2.53 -1.944767 - -
BEC-cut 2.59 -1.944964 0.9811 0.9883

Fig. 7: Some of the failure cases for mesh decomposition are shown, where the
instance of the lifted multicut problem is solved with BEC-cut. For success cases
refer to the Fig. 8.

7 Conclusion

In this paper, we propose two heuristic solvers BEC and BEC-cut. Both are mod-
ifications of the greedy agglomerative heuristic GAEC and provide a bounded
worst case complexity. We evaluate our solvers on three application scenarios: im-
age decomposition, 3D mesh segmentation and segmentation of neuronal struc-
tures from volumetric electron microscopic data. In all scenarios, the proposed
solvers yield results close to the ones from more elaborate solvers KLj [1] or
Fusion Moves [4], while the computation time is significantly lower.
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Fig. 8: Depicted above is a sample of success cases for mesh decompositions
generated by solving an instance of the lifted multicut problem with BEC-cut.
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15. Beier, T., Kroeger, T., Kappes, J., Köthe, U., Hamprecht, F.: Cut, glue, & cut: A
fast, approximate solver for multicut partitioning. In: CVPR. (2014) 1, 2

16. Kappes, J.H., Speth, M., Andres, B., Reinelt, G., Schnörr, C.: Globally optimal
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correlation clustering and image partitioning using perturbed multicuts. In: SSVM.
(2015) 1

19. Kim, S., Nowozin, S., Kohli, P., Y., C.D.: Higher-order correlation clustering for
image segmentation. In: NIPS. (2011) 1, 2

20. Kim, S., Yoo, C.D., Nowozin, S.: Image segmentation using higher-order correlation
clustering. IEEE TPAMI 36 (2014) 1761–1774 1, 2

21. Nowozin, S., Jegelka, S.: Solution stability in linear programming relaxations:
Graph partitioning and unsupervised learning. In: ICML. (2009) 1

22. Yarkony, J., Ihler, A., Fowlkes, C.: Fast planar correlation clustering for image
segmentation. In: ECCV. (2012) 1

23. Yarkony, J., Zhang, C., Fowlkes, C.: Hierarchical planar correlation clustering for
cell segmentation. In: EMMCVPR. (2015) 1

24. Shi, J., Malik, J.: Normalized cuts and image segmentation. TPAMI 22 (2000)
888–905 1
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