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Query Document

NLP Analysis:
     - NER spans
     - Sentences
     - Coref Mentions

Position Analysis:
     - containing Sentence
     - k closest NER spans
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Given mention in a document,
which Wikipedia entity does it represent?

Query Entity

Entity Linking Problem NLP Preprocessing

For each NER span: 
Assuming candidate set is retrieved
Goal: find joint assignment that maximize likelihood

Pair-wise model

No candidate set necessary!

Joint assignment model is 
optimized during 
candidate retrieval!

Neighborhood expansion estimates reliability for 
disambiguating the query mention.

Joint Neighborhood Assignment Models

Candidate Retrieval with Neighborhood 
Expansion

Abstract

Last year’s competition demonstrated that the NER
context contains important information that should
not be ignored in entity linking. State-of-the-art ap-
proaches anchor on unambiguous entities, look for
overlap in categories, or approximate a joint model
of candidate assignments, after Wikipedia candi-
dates have been selected. Current candidate ap-
proaches, such as anchor text maps, are effective but
may lead to very large candidate sets to be examined.
UMass has two objectives for our TAC submission.
First, we use cross-document context information to
perform entity neighborhood expansion and estimate
the importance of entity context using corpus-wide
information. Second, we use probabilistic informa-
tion retrieval that incorporates the neighborhood in-
formation to generate a ranked candidate set in a sin-
gle step. The result is a small candidate set that even
for less than 50 candidates contains the true answer
in 95% of the cases, allowing for computationally in-
tensive inference in the next phase. It turns out that
our best performing run simply predicts the top can-
didate of the unsupervised candidate ranking, out-
performing more than half of the contestants.

Example Query:

Candidates:
- Australian Broadcasting Corporation Television
- American Broadcast Central
- ...

"Australia" is an unambiguous entity

But: "Australia" is not really relevant for 
American Broadcast Central.

Danger to lead to the wrong conclusion.

ABC shot the TV drama "Lost" in Australia.
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Motivating Example: Relevance of NERs
k closest
NERs

Neighborhood Expansion retrieves the true entity 
at high cutoff rates

MRR 0.75 (versus 0.72) 95% recall at rank 45

Small candidate set allows for time intensive 
re-ranking methods!
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Factor representing
the sequential 
dependence model

Retrieval model based on Markov Random Fields

......

Candidate Retrieval Model
Mention t, name variants v, sentences s, NER spans e
component weights λ, relevance weights φ

Relevance of NER:
NERs that help disambiguation

Which NERs occur near 
Pseudo-Coreferent Mentions?

vote for NERs,
weighted by retrieval probability

k closest
NERs
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Candidate Retrieval and Entity Linking

where 
p(   |    ) =

Relevance of NER
for disambiguation


